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ANALYSIS OF DETERMINATE STRUCTURES

Structure

Structure is an assemblage of a number of components like slabs, beams, columns, walls,
foundations and so on, which remains in equilibrium. It has to satisfy the fundamental
criteria of strength, stiffness, economy, durability and compatibility, for its existence. It is
generally classified into two categories as Determinate structures and Indeterminate

structures or Redundant structures.
Analysis

Determinate structures are analyzed just by the use of basic equilibrium equations. By this
analysis, the unknown reactions are found for the further determination of stresses.
Redundant or indeterminate structures are not capable of being analyzed by mere use of
basic equilibrium equations. Along with the basic equilibrium equations, some extra
conditions are required to be used like compatibility conditions of deformations etc. to
get the unknown reactions for drawing bending moment and shear force diagrams.

Stable and Unstable Structures

A stable structure is one that will not collapse when disturbed. Stability may also be
defined as "The power to recover equilibrium ". In general, there are many ways that a
structure may become unstable, including buckling of compression members,
yielding/rupture of members, or nonlinear geometric effects like P-Delta; however, for
linear structural analysis, the main concern is instability caused by insufficient reaction
points or poor layout of structural members. An internally stable structure is one that
would maintain its shape if all the reactions supports were removed. A structure that is

internally unstable may still be stable if it has sufficient external support reactions.

An unstable structure generally cannot be analyzed. Therefore, it is useful to

know if a structure is stable or unstable before a structural analysis is conducted. There
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ANALYSIS OF DETERMINATE STRUCTURES

are four main ways that a structure may be geometrically unstable. These apply only to
linear geometric stability and not to instability caused by buckling, member yielding or

nonlinear geometry.

Support Types/Components

In the equations above, r is equal to the total number of reaction components as follows:

1. Roller (r)=1
2. Pin(r)=2
3. Fixed (r)=3

For multiple reaction points, (r) is the sum of all the components for all the reaction
points in the structure.

Equilibrium

The objectives of any structural analysis is the determination of reactions at supports and
internal actions (bending moments, shearing forces, etc.). A correct solution for any of these
quantities must satisfy the equations of equilibrium:

> Fx=0

> Fy=0

Y M=0

Statically Determinate Structure
When the equations of equilibrium are sufficient to determine the forces and stresses in a
structure, we say that this Structure is statically determinate.

Example-Simply supported beam, cantilever beam, three hinged arc

Statically Indeterminate Structure

A structure is termed as statically indeterminate, if it cannot be analyzed from equations

of equilibrium.
I —————
ADICHUNCHANAGIRI UNIVERSITY,BG NAGARA



ANALYSIS OF DETERMINATE STRUCTURES

Example-Fixed beam, continuous beam, two hinged arch

Redundancy and Degree of Indeterminacy

Indeterminate structures effectively have more unknowns than can be solved using the
three equilibrium equations (or six equilibrium equations in 3D). The extra unknowns

are called redundants.

The degree of indeterminacy is equal to the number of redundant. An indeterminate
structure with 2 redundants may be said to be statically indeterminate to the second

degree.

Difference between Determinate and Indeterminate Structures

1. Determinate Structures Equilibrium conditions are fully adequate to analyze the structure; while
indeterminate Structures Conditions of equilibrium are not adequate to fully analyze the
structure.

2. Determinate Structures The bending moment or shear force at any section is
independent of the cross-section or moment of inertia; while Indeterminate Structures
The bending moment or shear force at any section depends upon the cross-section or
moment of inertia.

3. Determinate Structures Temperature variations do not cause stresses; while
Indeterminate Structures Temperature variations cause stresses.

4. Determinate Structures No stresses are caused due to lack of fit; while Indeterminate
Structures Stresses are caused due to lack of fit.

5. Determinate Structures Extra conditions like compatibility of displacements are not
requiredto analyze the structure; while Indeterminate Structures Extra conditions like
compatibility of displacements are required to analyze the structure along with the
equilibrium equations.

6. Determinate Structures Bending moment or shear force at any section is independent
of the material property of the structure; while Indeterminate Structures Bending
moment or shearforce at any section depends upon the material property.
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Linear And Non-Linear Analysis of System

Linear Analysis

» Material is in elastic state obeys Hooks law.

» The behavior of linear structure can be analyzed using linear number of equation.
» Linear system has to obey the principle of super position.

Non-linear Analysis

» The non-linear Analysis allows non-linear stress-strain relationships.

» The stress in the material vary with the amount of deformation.

> Non-linearity can be caused by change in geometry or material behavior.
» It is accurate but not easy as linear analysis.

Types of Non-linearity

1. Material Non-linearity

This is caused due to stress strain relationship.

2. Geometric Non-linearity

This is caused due changes in geometry stiffness changes due to load application.

Degree of freedom(DOF)

The number of displacement allowed at the joints of the structure is called as degree of freedom.
Free End-DOF=3

Roller or simple support-DOF=2

Fixed support-DOF=0

Forms of Structure or Structural Form

The assembly of different components or elements is normally referred as structure. In building
consisting of walls, floor, roofs, beams, columns and foundation.
Structural forms can be explained based on 1, 2, and 3 dimensional structural system.
1-Dimensional Structure

The elements are arranged along one axis. may be X or y or z axis.

Example: Beam elements

2-Dimensional structure
If the element are arranged along two axis may be x and y or y and z or z and x axis are called as
two-dimensional structure.
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Example: Slab elements, plate elements

3-Dimensional structure

If the elements are arranged along three axis may be x-y-z or y-z-x or z-x-y is called as 3-
dimesional structure.

Example: Building frames, space frames, steel truss, space truss

Degree of static Indeterminacy[Ds]

The number of additional equation necessary to solve the problem is called static indeterminacy.
For Beams

Ds=r-3-c

Where, r= The number of reaction

3= Number of equilibrium condition

C= Number of hinge

For Plane frames
Ds=(3m+r)-3j

Where, m=number of members
J=number of joints

For plane Truss
Ds= (m+r)-2j

Degree of kinematic indeterminacy [DK]
The number of equilibrium condition are required to find the displacement component of all joints
of the structure [DOF]

For beams and plane Frames
Dk=3j-r+c

For Truss
Dk=2j-r
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ANALYSIS OF TRUSSES
Important Definition:

1. Deflection:
It is a temporary phenomenon of displacement due to movement action.

2. Deformation:
It is a permanent displacement due to load action.

3. Displacement:
It can be defined as the movement of individual points on a structural system due to various
external load.

4. Free body Diagram:

Part of the structure with external load applied to the members and internal forces developed in
the members.

5. Truss:

A truss is a structure consisting of members or element that takes only axial forces (tension or
compression)

CLASSIFICATION OF TRUSSES

Classification based on structure:

1. Plane or Planar truss:
A member lies in one plane or two dimensional plane.

2. Space truss:
It consists of members jointed together at their ends to form 3D structure.

Classification based on co-planar trusses
1. Simple trusses:

It is a planar truss which begins with triangular element and can be expanded by adding two
members and joints.
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2. Compound truss:

This truss is formed by connecting 2or more simple trusses together. they are often used for large
span.

3. Complex truss
This is a truss that can't be classified as being either simple or compound.

Classification based on requirement

1. Bridge truss
A bridge truss is a truss whose load bearing superstructure is composed of a truss and structure of
the connected element forms triangular unit.

2. Roof truss
These are structural components of houses and commercial buildings.

Classification based on stability of truss

1.Perfect truss or stable truss
A truss which does not change its shape and maintains equilibrium under the action of
load.
M=2j-r
2.Imperfect truss
Structure is made up of members more or less than the minimum member necessary to

keep it in equilibrium condition. When loading then it is called as unstable truss.

M # 2j-r
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Types of imperfect truss

Deficient truss: Structure is made up of members less than the joints and reaction components.
M<2j-r

Redundant truss: structure is made up of members more than the joints and reaction components.
M>2j-r

Components of truss

Chord: These are the members which form the outline of the truss.

Diagonals: These are inclined members inside the truss.

Verticals: These are the vertical members in the truss.

NOTE: If the member of the truss comes under compression it is called as struct and if it comes

tension called tie.

ASSUMPTION MADE IN THE ANALYSIS OF TRUSS
1. Members are straight and there is no eccentricity.

Self weight of member is neglected.

Loads and reaction are only transfer at joints.

Joints are frictionless pins.

Young’s modulus is same throughout.

The truss is perfect (m = 2j-r)

The members are subjected to axial forces only.

Bending moment and shear force are neglected.

© 0o N o g bk~ w DN

Obeys hook’s law.

Procedure for the analysis of truss (method of joints)

Step 1. Find the reaction at supporting pins using the force and the moment equations

Step 2. Start with a pin, most preferably roller pin,wher there are 2 or less than two unknowns.
Step 3. Proceed in a similar way and try to find out force in different members one by one.

Step 4. Take care of while labelling forces on the members. Indicate compression and tension
clearly. Step 5. Finally produce a completely labelled diagram.

Step 6.Try to identify the zero force members. It makes the problem simple.
I —————
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ANALYSIS OF DETERMINATE STRUCTURES

ROLLING LOAD AND INFLUENCE LINES

1 Introduction: Variable Loadings

So far in this course we have been dealing with structural systems subjected to a
specific set of loads. However, it is not necessary that a structure is subjected to a single set
of loads all of the time. For example, the single-lane bridge deck in Figurel may be subjected
to one set of a loading at one point of time (Figurela) and the same structure may be
subjected to another set of loading at a different point of time. It depends on the number of
vehicles, position of vehicles and weight of vehicles. The variation of load in a structure
results in variation in the response of the structure. For example, the internal forces change
causing a variation in stresses that are generated in the structure. This becomes a critical
consideration from design perspective, because a structure is designed primarily on the basis
of the intensity and location of maximum stresses in the structure. Similarly, the location and
magnitude of maximum deflection (which are also critical parameters for design) also
become variables in case of variable loading. Thus, multiple sets of loading require multiple
sets of analysis in order to obtain the critical response parameters.

Figure 1 Loading condition on a bridge deck at different points of time

Influence lines offer a quick and easy way of performing multiple analyses for a single
structure. Response parameters such as shear force or bending moment at a point or reaction
at a support for several load sets can be easily computed using influence lines.

. _________________________________________________________________________________________________|
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ANALYSIS OF DETERMINATE STRUCTURES

For example, we can construct influence lines for (shear force at B ) or (bending
moment at) or (vertical reaction at support D ) and each one will help us calculate the
corresponding response parameter for different sets of loading on the beam AD (Figure 2).

Figure 2 Different response parameters for beam AD

An influence line is a diagram which presents the variation of a certain response
parameter due to the variation of the position of a unit concentrated load along the length of
the structural member. Let us consider that a unit downward concentrated force is moving
from point A to point B of the beam shown in Figure 3a. We can assume it to be a wheel of
unit weight moving along the length of the beam. The magnitude of the vertical support
reaction at A will change depending on the location of this unit downward force. The
influence line for (Figure3b) gives us the value of for different locations of the moving unit
load. From the ordinate of the influence line at C, we can say that when the unit load is at
point C .

unit downward lcad
B moving from A 12 <
' »

influcnce line for 24

A B3 Fo e ——
27

Ha ' =
R,q T 'J.S
R3=0 5 when the mowing unit lead is at

. _________________________________________________________________________________________________|
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ANALYSIS OF DETERMINATE STRUCTURES

Thus, an influence line can be defined as a curve, the ordinate to which at any
abscissa gives the value of a particular response function due to a unit downward load acting
at the point in the structure corresponding to the abscissa. The next section discusses how to
construct influence lines using methods of equilibrium.

2 Construction of Influence Lines using Equilibrium Methods

The most basic method of obtaining influence line for a specific response parameter is
to solve the static equilibrium equations for various locations of the unit load. The general
procedure for constructing an influence line is described below.

1. Define the positive direction of the response parameter under consideration through
a free body diagram of the whole system.

2..For a particular location of the unit load, solve for the equilibrium of the whole
system and if required, as in the case of an internal force, also for a part of the member to
obtain the response parameter for that location of the unit load.This gives the ordinate of the
influence line at that particular location of the load.

3. Repeat this process for as many locations of the unit load as required to determine
the shape of the influence line for the whole length of the member. It is often helpful if we
can consider a generic location (or several locations) x of the unit load.

4. Joining ordinates for different locations of the unit load throughout the length of the
member, we get the influence line for that particular response parameter. The following three
examples show how to construct influence lines for a support reaction, a shear force and a
bending moment for the simply supported beam AB .

Example 1 Draw the influence line for (vertical reaction at A ) of beam AB in Fig.1
| 1R

Solution:
Free body diagram of AB :

P E,=0= =1 Ry

S (aboutB) = 0 = Ra(L) = 104 — %)
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II
— R..-!. =1- —
b
So the influence line of :
1
A
A B
&
- !-l

Example 2 Draw the influence line for (shear force at mid point) of beam AB in Fig.2.

Solution:
% 1
——]
R,,q RB

S M (about By =0=> R, = 1—%

For x « L 1
: | ’1 e
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Z_Fy=n=>rc=1—ﬁﬁ=%

For x‘;p_é

. X
Z.Fy — D :-VC':_R.H o E - 1

So the influence line for Vc:

Solution:

. _________________________________________________________________________________________________|
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> M (about B) = IJ:><RA=1-%

For ;{;;Z_L

S (about Sy =10

5
¥ X
=—— 4+ X=—
%
kG I<+ I x .gl] Vi
A1—D
ol #
Ry Me
e 2563 N
i =

¥l
2x x
=——t F=—
3
For x = 2; He
4 )
Bl i
B Me
R ) ,
™ |
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My

Similarly, influence lines can be constructed for any other support reaction or internal
force in the beam. However, one should note that equilibrium equations will not be sufficient
to obtain influence lines in indeterminate structures, because we cannot solve for the internal
forces/support reactions using only equilibrium conditions for such structures.

3 Use of Influence Lines

In this section, we will illustrate the use of influence lines through the influence lines
that we have obtained in Section 2. Let us consider a general case of loading on the simply
supported beam (Figure 4a) and use the influence lines to find out the response parameters
for their loading. We can consider this loading as the sum of three different loading
conditions, (A), (B) and (C) (Figure 4b), each containing only one externally applied force.

Sich 4kNl
A B

cC D
b ol B
2w lase | 1oz | 1m2 | lim
B e

(a)
SEN
Case A
41ch

A B
Case B I\ = A

ft ¢ D o
Case O "3:-\ = D é}g

S ; zwt

(t)

Figure4: Application of influence lines for a general loading: (a) all the loads, and (b)
the general loading is divided into single force systems
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ANALYSIS OF DETERMINATE STRUCTURES

For loading case (A), we can find out the response parameters using the three
influence lines. Ordinate of an influence line gives the response for a unit load acting at a
certain point.

Therefore, we can multiply this ordinate by the magnitude of the force to get the response due
to the real force at that point. Thus

Ry = 5N x (ordinate of the /2 of Ry atx="2m)=5(1—-2/6)=333kN
Vo= 5kN x (ordinate of the ZZ of ¥, at x=2m) =5(2/6) = 1. 67kN

M ;= 5k x { ordmnate of the JZ of M ; at x=2m) = 5(2/3) = 333kNm

Similarly, for loading case (B):
Ry =4kN x (ordinate of the ZLof Ry at x=4m)=4(1-4/6)=1.33kN

¥o=4kNx (ordinate of the /L of Vo atx=4m)=44/6-1)=-133kN

M = 45N % (ordinate of the JLof My atx=4m)=4(2 x6/9) =5 33kNm

And for case (C),
Ry =—2kN x (ordinate of the fLof R, at x=5m)=-2(1- 5/6) =-0.33kN

Vo =—2kN x (ordinate of the IL of V, atx=5m) =-2(5/6- 1) = 0.334N

My =-2kNx (ordnate of the L of M patx=5m)=-2(2x6/3-2x5/3)=-133kNm
By the theory of superposition, we can add forces for each individual case to find the
response parameters for the original loading case (Figure4a). Thus, the response parameters
in the beam AB are:

Ry=(333+1.33 - 0330kN= 4.33kN
Vo= (1.67-1.33+ 0 33)kN = 0.67kN
My=1(3.33+ 533 -1.330kN = 7.33kNn

One should remember that the method of superposition is valid only for linear elastic
cases with small displacements only. So, prior to using influence lines in this way it is
necessary to check that these conditions are satisfied.

It may seem that we can solve for these forces under the specified load case using
equilibrium equations directly, and influence lines are not necessary. However, there may be
requirement for obtaining these responses for multiple and more complex loading cases. For
example, if we need to analyse for ten loading cases, it will be quicker to find only three
influence lines and not solve for ten equilibrium cases.

The most important use of influence line is finding out the location of a load for
which certain response will have a maximum value. For example, we may need to find the
location of a moving load (say a gantry) on a beam (say a gantry girder) for which we get the

maximum bending moment at a certain point. We can consider bending moment at point D of
I ———
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Example3, where the beam AB becomes our gantry girder. Looking at the influence line of
one can say that will reach its maximum value when the load is at point D . Influence lines
can be used not only for concentrated forces, but for distributed forces as well, which is
discussed in the next section.

4 Using Influence Lines for Uniformly Distributed Load

Consider the simply-supported beam AB in Figure 6.5, of which the portion CD is
acted upon by a uniformly distributed load of intensity w/unit length . We want to find the
value of a certain response function R under this loading and let us assume that we have
already constructed the influence line of this response function. Let the ordinate of the
influence line at a distance x from support A be . If we consider an elemental length dx of the
beam at a distance x from A , the total force acting on this elemental length is wdx . Since dx
is infinitesimal, we can consider this force to be a concentrated force acting at a distance x
.The contribution of this concentrated force wdx to R is:

dR = (wdx) Fy(x)

Therefore, the total effect of the distributed force from point C to D is:

I ¥
R=[dr- waR(x)a’x
G X

*
= wIFR (x)dx=w (area under the influence line from Cto D )
¥

Figure 5 Using influence line for a uniformly distributed loading
winunit length

Fr(x)
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Thus, we can obtain the response parameter by multiplying the intensity of the
uniformly distributed load with the area under the influence line for the distance for which
the load is acting. To illustrate, let us consider the uniformly distributed load on a simply
supported beam (Figure 6). To find the vertical reaction at the left support, we can use the
influence line for that we have obtained in Example 1. So we can calculate the reaction as:

R, = 2kchimx {0.5(3/4 + 1/4) x 4m) = 4k

2&Mm

le 2992 ;I‘ 4 * 2 ,{

Figure 6.6 Uniformly distributed load acting on a beam
Similarly, we can find any other response function for a uniformly distributed loading
using their influence lines as well. For non-uniformly distributed loading, the intensity w is

not constant through the length of the distributed load. We can still use the integration
formulation:

I x2
R=[dR = [wry(x)dx
oy x!

However, we cannot take the intensity w outside the integral, as it is a function of x .

. _________________________________________________________________________________________________|
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3.5 Procedure for fipdirig deflection using Castigliano’s:itheorem:

|. Find reactions and computc moment M about X-X

oM
2. Calculate = where P is a.Point load

aP .
- 3..IT Pomt load is not given :rr the problem, then assumed dummy point jj“ad Fald

deflection is requi

he point where

I
I ! KL
Apply Castngllaposihcorcln,a E 9P
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(L Y A R R R Y . - J:

Wm of Beams end Frames by Enorgy Molhods R :if

5, In case of dummy point load, put P =0 in the above equation,
‘6. To find slope at a point, apply a dummy moment P at that pointand apply Castigliano's theorem, 7

A= j -—a‘.u: and then put P = 0 for dummy moment. "

f
pmblcm 1: Determine the deﬂe.cuon at the load point for the beam shawn in rgurc by asin
Castigliano's theorem,

¢ 5

| L/2 | L/2
A 2 - T > B

Solution: |
Let X be the distance from A.

Due to symmetry, consider only half portion i.e. AC portion. i.e. X=01to 7 -

o
/2 L/2

P4
- -..._F_ -H

|

>
¥
Q%
o

Reactions: :
-
R, = Ry = 2
Calculating Moment at-x-x:
PX f |
Mr"RA.xxﬂ T _ ‘ ‘5.
‘ - i
Calcuiaung % 5
= ;53:*?- 1
VR !
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PX
oM a(T) X
p =~ T3

Calculating deflection at € load point;
Apply Castigliano's theorem, for the.entire beam ie2xA
AL

it

o

>
= 1-—_,.
I
Mé‘bﬂ

I
|
£

— ey
—— e a——
~
S
[ %]
»D
—

I | 281§ El

1
N
-__fl]_ o
—
u'i*\t
i
S =

P {(L12)
2E] 3
[
A= acting downwards

¢ 48E!

! Problem 2: Find the vertical deflection and slope at free end for the cantilever beam shown in
figure by using Castigliano’s theorem. :

W / unit length

Aﬁﬁf‘\ﬁf\f\ﬁ/ﬁ{'\ﬁﬁag B‘
A Ty 1 o
Vi

Fil

Solution:
‘ M Finding vertical deflection: | :
| + 1| Tofind vcnihal deflection at free end for the beam, we need toapply a dummy point load P atsh.

|t

Let X be the d_istant:c from B.

Timits foris ¥ =0tn [/,

r
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P

W / unit EIeth ;

X | ¢

A ﬂf T

i
i X ~
'« y ,i
| ’ x =
Calculating Momentat x-x: ‘
v , X Wy ?
Mx = PR X =Wx X -i- = Pt T
g L
. = DX+ WE
Calculating 57 : differentiate wrt P &
wxi
M a(&l' j
S PRLaAlt
_ Caleulating deflection at free end B: i
Apply Castigliano's theorem, ’
- I! 2
J.MaMd L!PX+H’: -
&5 = J £l OP : ,I( ' EJ‘! (}'\J
W 3
. j{Px W2
U 5 2
Now for dummy load P, put P = 0 o
L 3 t
| WX
= — | Jelx
By El 'c[ 2 e
oAl
w[x
= E [2:411
Lt
i S by = BET acling downwards
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olrucurar

- 'ﬁindtng slopeatfme.cndﬂ -

To find slope at free edd for the beam, we need to apply a dummy moment P at 8.
Let X be the distance ffom B.
’ Lumts forisX=0t0L’

W / unit length

‘Xh P
, f\f‘\f‘\ﬁf‘\r’“\ﬁm/"\nhﬂ
A L B
-~ E X :{ | . .
! : X
Cnlculntmg Mame.ntat f(-x ? i
| w i f_ | wx? /7 U"}}{L
_J'I-'_l'x_wF-l-WxXx 5 ==P+ 5 z I{P'f.__,.z.:-

Calculatmg 5P : differentiate wrt P

- 2
!aM! ”*Wﬂ

—

P P =
Calculating slope at fred end 5:
Apply Castigliano's thec{re.m,

A “
L 2
- AL I(P+——]rb.
El 7
Now for dummy moment P putP=0
. ; " .
’ L[y
; % = T { 2

—_—
— -
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we' - ;
- .6, = 3BT acting clockwise ! J

pmb}cm 3: Using Castigliano’s theorem, determine the dcﬂccﬂon at the load pmm for the sump.fy
supported beam shown in figure. Take &/ 1- Constant,

1~ : AR
‘ .
Solation: . - A
" Let X be the distance from A, .. 7
- ; o
2t W A
A | = b ;
A 5 . B :
22 i C :
X

-
pill
b, i

Le
K
Finding Reactions at supports:

. ZMA =0 !I

R'xL=j:z
a

e
" .ZMA=0 .
. R,+R, = W
Wa Wb
g LW
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Calculating Moment at x-x:

Portion AC CB N
Origin A ' B |
" Limits 0-a 0-b ' N
a .
; »x o
b L
Cl El El
M b - aX
ow L L,
| H Calculating deflection at C load point:
4t Apply C:lStiq\iano's theorem
L
M M
— | =——x
B = { El 9P
' M oM M oM
= P e TN (e
* El QW + El OW
,.' WbX Wak’
- [—L an
- !( : j () e
i
2
i Wb jxidx Wﬂ J‘de.r
EIl* 4 EIF -,
a [
Wh? [ X1 wd [ x
' “Er |3 TE|3
Wbia' Wb’
m Y METTE
Hl |
2.2
| II s (a+b
= a0
we know that L=a + b
= Wb'a’
! . A, = —— acting downw
| ¢ ® T3E eungoown ards
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Problem 8: Determine the horizontal disPIhccrr_lent of the roller support end' A of ﬂ'fe frame :

stiown in figure by strain energy method. Take £/ = 8000 KN-m?

C

4

Solution:

' B
e mn-' K:TV&U

Finding Horizontal deflection atA:

Let P = SkN
Finding reactions:
ZH=U

H,= -SkN =-P

Calculating Moment atx-x:

Y

-

g s St
N N
A < 3m ?,;

-
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T I+ " DU LAV Y

Portion AB BC CD
Origin A C D
Limits 0-4 0-3 0-4
Mg - 1PX -4P 'Px
El El El El
oM X -4 i
oP

Apply Castigliano's theorem

[ [, R
0

—_——ax ——dx
Ry ® Efan*'nEfaP El 9P
L mpx )X ds + 1 j(—aP}f;nd}“
Lp - - — Y o i
El L( X f:fﬁ o b B
_LI( —PX)(- x}cg:., % G G s e b
El'y i T 3
il
" ‘ - - A _53 il . A
H f . _f_szdhi’-_;jus)d“ijxm
El % El % El %
" T 42
p[X*] P P X }
— —— = em—— + —
1 “Ef[?*l*ﬂ““ﬁ B3
) 431
P p .i{-
) 5[3}5[“?“3] RE
2133P 48P  21.33P
="E " E El
90.66P
- E
Substitute the values of P =5kN and value of £f in the above expression, W_¢ gel.
90.66% 5 |
) 84 = T3000
= 0.0566625 m
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MODULE-05

ARCHES AND CABLE STRUCTURES




CABLE

Cables and arches are closely related to each other and hence they are grouped in this course in the same
module. For long span structures (for e.g. in case bridges) engineers commonly use cable or arch construction
due to their efficiency. In the first lesson of this module, cables subjected to uniform and concentrated loads are
discussed. In the second lesson, arches in general and three hinged arches in particular along with illustrative
examples are explained.

Fundamental Characteristic of Cable & Arch

Cables

v’ Carry applied loads & develop mostly tensile stresses
v" Loads applied through hangers
v’ Cables near the end supporting structures experience bending moments and shear forces

Arches

v’ carry applied loads and develop mainly in-plane compressive stresses;

v' Loads applied through ribs

v’ Arch sections near the rib supports and

v’ Arches, other than three-hinged arches, experience bending moments and shear forces

Example
Cable type structures - Suspension roof, suspension bridges, cable cars, guy-lines, transmission lines, etc.

Arch tvpe structures - Arches, domes, shells, vaults

More information related to the topic

Structure may be classified into rigid and deformable structures depending on change in geometry of the
structure while supporting the load. Rigid structures support externally applied loads without appreciable
change in their shape (geometry). Beams trusses and frames are examples of rigid structures. Unlike rigid
structures, deformable structures undergo changes in their shape according to externally applied loads.
However, it should be noted that deformations are still small. Cables and fabric structures are deformable
structures. Cables are mainly used to support suspension roofs, bridges and cable car system. They are also used
in electrical transmission lines and for structures supporting radio antennas. In the following sections, cables
subjected to concentrated load and cables subjected to uniform loads are considered.

AT~ M Funicular shape
/ ‘ - —T I\ 7777 77777 /
/ 1 1 [ 1 ‘ I ] Ji \\\ Unloaded cable T~ _ /\_l‘ T
/ Deformable structure. \\ (when dead load is neglected) 5 I;
m;: a5 i \%7 Cable in tension.

The shape assume _. F',gl -~ e orachain (with no stiffnes s FI9-2 e action of external o at Fig-3 hung from

two supports is known as a funicular shape. Cable is a funicular structure. It is easy to vic ~ ,at a cable
hung from two supports subjected to external load must be in tension. Now let us modify our definition of
cable. A cable may be defined as the structure in pure tension having the funicular shape of theload.



Cable subjected to Concentrated Loads

As stated earlier, the cables are considered to be perfectly flexible (no flexural stiffness) and
inextensible. As they are flexible they do not resist shear force and bending moment. It is subjected to axial
tension only and it is always acting tangential to the cable at any point along the length. If the weight of the
cable is negligible as compared with the externally applied loads then its self weight is neglected in the analysis.
In the present analysis self weight is not considered.

Cable subjected to concentrated load.

Consider a cable as loaded in the Fig above. Let us assume that the cable lengths L1, L2, L3, L4 and sag at
C, D, E (hc, hg, he) are known. The four reaction components at A and B, cable tensions in each of the four
segments and three sag values: a total of eleven unknown quantities are to be determined. From the geometry,
one could write two force equilibrium equations ( Y Fx=0, > Fy=0 ) at each of the point A,B,C,D and E i.e. a total
of ten equations and the required one more equation may be written from the geometry of the cable. For
example, if one of the sag is given then the problem can be solved easily. Otherwise if the total length of the
cable S is given then the required equation may be written as

S =y L2 +h7 3L + (g —h)? +y L2 + Gy =) + L+ +1,)’

Cable subjected to uniform load

Cables are used to support the dead weight and live loads of the bridge decks having long spans. The
bridge decks are suspended from the cable using the hangers. The stiffened deck prevents the supporting cable
from changing its shape by distributing the live load moving over it, for a longer length of cable. In such cases
cable is assumed to be uniformly loaded.

Consider a cable which is uniformly loaded as shown in Fig 1. Let the slope of the cable be zero at A.
Let us determine the shape of the cable subjected to uniformly distributed load. Consider a free body diagram of
the cable as shown in Fig 31.3b. As the cable is uniformly loaded, the tension in the cable changes continuously
along the cable length. Let the tension in the cable at m end of the free body diagram be T and tension at the n
end of the cable be (T+AT). The slopes of the cable at m and n are denoted by 6 and 0+A@ respectively.
Applying equations of equilibrium, we get



> Fr=0
D> Fx=0
> Mn=0

v n
A v
f G
o v
. 7
, |
v
IS8 v > X
“ v
7] -
A “la e %
e L A

Cable subjected to uniformly
distributed load.

Fig-1

—Tcos@+(T+AT)cos(B+AE)=0

—Tsmé+(T+AT)sm(@+Af8)—q,(Ax) =0

— (T cos B)Ay + (T sin B)Ax + (gnﬂd‘)g =0

T+ T
0
“".,.n
N F
v
Y
o
v.l ] y
) ¢
m
22 o i = o
v)"x VV v As
T -
'R Y |
— —»

Free-body diagram

Fig-2

Dividing equations EQ"-1, 2 & 3 by Ax and noting that in the limit as Ax — 0, Ay—0, A@ —0 and AT — 0;

lim AT
—sin(@+ Af) =q¢
Ax — 0 AE ( ) =40
i{T SI@)=q, e (Eq"-4)
ax
i (I CUS ‘9} = 0 ......... (Eqn'5)
dx
li -
1111 —Tcoséd ﬁ—1 +
Ar—0 Ax
i =tan#
dx T cos @ = constant

Integrating equation 5 we get,

At support (i.e., at x=0), Tcos® = H

i.e. horizontal component of the force along the length of the cable is constant.



— Problem-1:
Determine reaction components at A and B, tension in the cable and the sag Yg & Yp of the cable shown in the
following Fig. Neglect the self weight of the cable in the analysis.

H A & H
- - = - - - >
TR A A A
R Y Y;- 2m y Rov
Ty v
b
— Y D P
¥ C
17 kKN Y 10 kN
Y 10 kN
4m 3m 3m am
- >« > re >
Solution:
vT'
T
\ L
T T
ab i A \j d
M€ : i v
ab B
T D ? de
A T
be C 1
R r
be 4 ed b
T,
£ Y
4
T,
Joint A Joint B
Joint C Joint D

Since there are no horizontal loads, horizontal reactions at A and B should be the same. Taking moment about
E, yields

R x14—-17x20-10x7—-10x4=0

R.zﬁzﬂj kN: R _=37-20=17kN.

ay &y

Now horizontal reaction H may be evaluated taking moment about point C of all forces left of C.

R_xT—Hx2-17x3=0

H=445kN

Taking moment about B of all the forces left of B and setting Mg=0, we get

R x4-Hxy,=0 _l_.,f:_lfﬁiuzl.'*gﬁm
G

4450

Similarly, v = =1.528m




To determine the tension in the cable in the segment AB, consider the equilibrium of joint A

> H =051 cesd, =H
44.5

Ly =48.789 kN

(Hirame)
L/ /37 +0.20¢°
The tension Tay may also be obtained as,

T, =yR, +H' =~20"+445" =48789 kN

Segment bc
Applying equations of equilibrium,

ZFX =0=7,cosd, =1, cosd,

L= i N
| 3);'
L/ W3 #0208 ]
Segment cd
T, = T, cos, 4.5 _ 4505 KN
cosd, / |
\ /37 +0.472
Segment de
L L .. ~47.636 kN
cost,,

a7 _
/4t 41528

The tension T¢e may also be obtained as,

T. =R I+ H? =17 +44.5* =47.636 kN
de €)



— Problem-2:

The suspension bridge in the figure below is constructed using the two stiffening trusses that are pin connected
at their ends C and supported by a pin at A and a rocker at B. Determine the maximum tension in the cable IH.

The cable has a parabolic shape and the bridge is subjected to the single load of 50 kN.

| 4@3m=1Im | 4

@3m=12m

-

Solution:

> o

" 3m 9m

W EM, =0: +) ZM=0:
—-12C, +87, =0 —12C, +350(9)-8T, =0
Fe b O (1) I ==15C45625 = (2
From (1) and (2). Cf}.= 18.75 kN. T,=28.125kN
: : . dy W, X
) g +=tanf?—_}81_r
T 2 T W, X
" x v = - dx
m W x 28.12
! [ T,=28.12kN o 0
k! '9 T 4
'Ii"u = :iox . —+ C,l
. 28.12 kN =812
W _w,(2)°
L 3 m | 2(28.12)

w,=3.125 kN/m



T Ty
0'\1 f{/.'é?v
8m ‘ e ; 4 8 m
~ T,=28.12 kKN T,=28.12kKN I
1 —_ q h - ‘ v
12w, =37.5KkKN 12w,=37.5 kN
12m 1 1lm q
i l M i
f = =
T, =/(37.5)* +(28.12)’
I;
Lo L = 46.88 kN
28.12 kN
T = T,=T;=46.838kN
T.=T =2812KN

50 kKN

— Problem-3:

For the structure shown:

(a) Determine the maximum tension of the cable
(b) Draw quantitative shear & bending-moment

diagrams of the beam.

4@3m=12 m
e

4@3m=12m

=0: 9.375(3+6+9+12+15+18+21)-50(15)+ B, (24) =0
B,=-1.56 kN.l
=0:  A4,+7(9.375)-50-1.56=0

A,=-14.07KN. |




W Py
+) AMy=0:

B,(5)-5(2.5)+T,(0.5)=0

From (1) and (2),

R 0 N
’ W x
T =25KkN Tp= Tou
£ A%
- &1
P i— —1__
T =25kN
20w,
L 20m R
L

20w,=20kN T

'I‘J h iy - -
+l
B 4
HJ 4
BT
| 20m |
¥ =l
-
J‘/’ EMC == 'O

=T, =4/(25)> + (20)°

T,.. =32.02kN

L
1 kEN/m
Yl
C,



T=w,(2.5m)=(1kN/m)(2.5m)=2.5kN

25 25 25 25 25 25 25 25 25
1 1 KN/
P ! I Y P
x O c
A B W
A} =1.25 kN C,=1.25kN
Sm 200m >
10@25m=25m

V(KN) | 55

\ x (m)

N\

=1.25 =1.25 -1.25% -1.23% -1.25
M (KN*m) | 0.78| 0,78 0.78 0.78 0.78 0.78 0.7§ 0.7§ 0.78 0.78
x (m)
—Problem-4 _—
The cable shown supports a girder which weighs 12kN/m. N i
Determine the tension in the cable at points A, B, and C. i bu
12 m
B

Solution:

30m

&y

1= m

6m

-

j
12x,



B g =12
ax, I,

= o7, "‘F]
121
6= )
=5 e}
T.'l.
BA.-'H ¥
—1 X4
f
12 m \ 12 xz
_ - :““ﬂ:\p 8 ' Tn T
J| [ w_ =12 KN
B===——===_
+E2 B30 ~-L )
M-I
T,=1" -mmeeme=(1)
30— L)
I: ( '} """"" (&
2T,
From (1)and (2), L' =12.43m, T =154.5kN
T,=T7,=1545kN
y 4 12 L
Tlr
Te =4I, + (2L
=4/(134.50)" + (12x12.43)

=2148 kN

- 2x
22 anl)) =2
dzx’! @
12x 12x2
3 — 2 ¢‘--'? == 2
»=| - 5
12x,"
Y= 3
s i

}5=%5{30—L')3

2T

: Ba=1)

g
12(30-1") T,

T,

T, =y +12(30 - L))}

= (154.50)* + [12(30 - 12.43)]°

=261 4 kN



—Problem-5:

A cable of uniform cross section is used to span a distance of 40m as shown in Fig. The cable is subjected to
uniformly distributed load of 10 kN/m. run. The left support is below the right support by 2 m and the lowest
point on the cable C is located below left support by 1 m. Evaluate the reactions and the maximum and
minimum values of tension in the cable.

40 m

Solution:
Assume the lowest point C to be at distance of x m from B. Let us place our origin of the co-ordinate system xy
at C.

o1 B@0-0T 10¢0-x)° (Eq™1)
- 2H 2H
¥, =3= 1?"" ......... (Eq"-2)

Where yq and y» be the co-ordinates of supports A and B respectively. From equations 1 and 2, one could
evaluate the value of x.

2
10(40 - x)? = 192

From equation 2, the horizontal reaction can be de:[ermin?ed.
g =10%2339 169180 kN

Now taking moment about A of all the forces actin% on the cable, yields
_ 10x40x20+1071.80x 2

x=25359m

. =253.59 kN
’ 40
Writing equation of moment equilibrium at point B, yields
x20x10-1071.80x2 :
_40x20%10-1071.80 _ 14641 KN

i 40
Tension in the cable at supports A and B are

T, =~146.41> +1071.81° =1081.76 kN

T, =+/253.597 +1071.81> =1101.40 kN



The tension in the cable is maximum where the slope is maximum as 7 cos@ = H. The maximum cable tension
occurs at B and the minimum cable tension occurs at C where d3L= ©=0;and Tc=H =1071.81 kN.
X

ADDITIONAL CONSIDERATIONS FOR CABLE SUPPORTED STRUCTURES

4+ Forces on cable bridges: Wind drag and lift forces - Aero-elastic effects should be considered (vortex-
induced oscillations, flutter, torsional divergence or lateral buckling, galloping and buffeting).

+ Wind tunnel tests: To examine the aerodynamic behavior

+ Precaution to be taken against: Torsional divergence or lateral buckling due to twist in bridge; Aero-
elastic stability caused by geometry of deck, frequencies of vibration and mechanical damping present;
Galloping due to self-excited oscillations; Buffeting due to unsteady loading caused by velocity
fluctuations in the wind flow



ARCHES

Arches can be used to reduce the bending moments in long-span structures. Essentially, an arch acts as
an inverted cable, so it receives its load mainly in compression although, because of its rigidity, it must also
resist some bending and shear depending upon how it is loaded and
shaped.

In particular, if the arch has a parabolic shape and it is subjected
to a uniform horizontally distributed vertical load, then only compressive
forces will be resisted by the arch. Under these conditions the arch shape
is called a funicular arch because no bending or shear forces occur
within the arch.

Different terms and types of Arches

extrados . ;- Crown
(orback) \_ 4
springline

|
intrados centerline rise
h \
(or soffit)
haunch

\ abutment

Depending on its uses, several types of arches can be selected to support a loading:

Two Hinged Arch

<
,/‘/ — \‘
S
R\ : Tied Arch
Three Hinged Arch P h
Iy fiva’ C— ==

A fixed arch is often made from reinforced concrete. Although it may require less material to construct than
other types of arches, it must have solid foundation abutments since it is indeterminate to the third degree and,
consequently, additional stresses can be introduced into the arch due to relative settlement of its supports.

Two Hinged Arch:

A two-hinged arch is commonly made from metal or timber. It is indeterminate to the first degree, and
although it is not as rigid as a fixed arch, it is somewhat insensitive to settlement. We could make this structure
statically determinate by replacing one of the hinges with a roller. Doing so, however, would remove the

capacity of the structure to resist bending along its span, and as a result it would serve as a curved beam, and
not as an arch.

Three Hinged Arch:

A three-hinged arch which is also made from metal or timber, is statically determinate. Unlike statically
indeterminate arches, it is not affected by settlement or temperature changes.



Tied Arch:

If two and three-hinged arches are to be constructed without the need for larger foundation abutments and if
clearance is not a problem, then the supports can be connected with a tie rod. A tied arch allows the structure
to behave as a rigid unit, since the tie rod carries the horizontal component of thrust at the supports. It is also
unaffected by relative settlement of thesupports.

Three-Hinged Arches

v The third hinge is located at the crown & the supports are located at different elevations
v To determine the reactions at the supports, the arch isdisassembled

—

e

A (
_.' —
A b

B

In order to determine the reactions at the supports, the arch is
disassembled and the free-body diagram of each member. Here there are
six unknowns for which six equations of equilibrium are available. One
method of solving this problem is to apply the moment equilibrium
equations about points A and B. Simultaneous solution will yield the
reactions Cx and Cy. The support reactions are then determined from the
force equations of equilibrium. A, Vo

Once all support reactions obtained, the internal normal force,
shear, and moment loadings at any point along the arch can be found T
using the method of sections. Here, of course, the section should be taken
perpendicular to the axis of the arch at the point considered.

—Problem-6:
The tied three-hinged arch is subjected to the loading shown. Determine the components of reaction at A and C
and the tension in the cable.

15 kN B

.5 m 1 m



Solution:

Entire arch :

) IM, = 0:

~—'T EF. =8

Member 4B :

+) Mz =0:

C,(5.5)-10(4.5)~15(0.5) =

C,=9.545kN

A4,—15-10+9.545=0

A, =1546 kN

15(2)—15.455(2.5)+T,(2) =0

15.455-15-B8,=0

4319-B =0

4319-T,=0

15 kN

T,=4.319kN

B,=0.455kN

' A,=1546kN

B =4319kN

T,=4319 kN

B,

I5kN

Im

L+14I-
0.5 m

€, =945 kN
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